SUPERLINEAR ELLIPTIC PROBLEMS WITH SIGN CHANGING COEFFICIENTS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinear elliptic problems with sign changing coefficients

Via variational methods, we study multiplicity of solutions for the problem    −∆u = λb(x)|u|q−2u + a u + g(x, u) in Ω , u = 0 on ∂Ω . where a simple example for g(x, u) is |u|p−2u; here a, λ are real parameters, 1 < q < 2 < p ≤ 2∗ and b(x) is a function in a suitable space L. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any λ > 0, and a...

متن کامل

Eigenvalue problems with sign-changing coefficients

We consider a class of eigenvalue problems involving coefficients changing sign on the domain of interest. We describe the main spectral properties of these problems according to the features of the coefficients. Then, under some assumptions on the mesh, we explain how one can use classical finite element methods to approximate the spectrum as well as the eigenfunctions while avoiding spurious ...

متن کامل

On Neumann “superlinear” elliptic problems

In this paper we are going to show the existence of a nontrivial solution to the following model problem,

متن کامل

A Note on Additional Properties of Sign Changing Solutions to Superlinear Elliptic Equations

We obtain upper bounds for the number of nodal domains of sign changing solutions of semilinear elliptic Dirichlet problems using suitable min-max descriptions. These are consequences of a generalization of Courant’s nodal domain theorem. The solutions need not to be isolated. We also obtain information on the Morse index of solutions and the location of suband supersolutions.

متن کامل

A Sign-Changing Solution for a Superlinear Dirichlet Problem

We show that a superlinear boundary value problem has at least three nontrivial solutions. A pair are of one sign (positive and negative, respectively), and the third solution changes sign exactly once. The critical level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. If nondegenerate, the one sign solutions are of Morse index 1 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2012

ISSN: 0219-1997,1793-6683

DOI: 10.1142/s0219199712500010